U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Untitled Document
Astrogeology Analysis Ready Data
Toggle Dark/Light/Auto mode Toggle Dark/Light/Auto mode Toggle Dark/Light/Auto mode Back to homepage

Citations

  • , , , , & (). Mars Digital Image Model 2.1 Control Network.
  • , , , , , & (). Preparing for Themis Controlled Global Mars Mosaics.
  • , , , , , , , , , , , , , , , & (). Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Celestial Mechanics and Dynamical Astronomy, 109(2). 101–135. https://doi.org/10.1007/s10569-010-9320-4
  • , , , , , , , , , , , , , , , , & (). Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celestial Mechanics and Dynamical Astronomy, 130(3). 22. https://doi.org/10.1007/s10569-017-9805-5
  • , , & (). Open data products-A framework for creating valuable analysis ready data. Journal of Geographical Systems, 23(4). 497–514. https://doi.org/10.1007/s10109-021-00363-5
  • , , , , , , , , , , , , , , , , & (). Computational geology for lunar data analysis from lism on kaguya. In Advances in Geosciences. (pp. 77–88). World Scientific Publishing Company. https://doi.org/10.1142/9789812838162_0007
  • , , , , & (). A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus, 273. 346 – 355. https://doi.org/https://doi.org/10.1016/j.icarus.2015.07.039
  • , , , , , & (). Criteria for Automated Identification of Stereo Image Pairs.
  • , , , , , , & (). hical—The HiRISE radiometric calibration software developed within the ISIS3 planetary image processing suite U.S. Geological Survey : Reston, VA. https://doi.org/10.3133/tm7C27
  • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & (). Galileo’s First Images of Jupiter and the Galilean Satellites. Science, 274(5286). 377–385. https://doi.org/10.1126/science.274.5286.377
  • , & (). The Ames Stereo Pipeline: NASA’s Open Source Software for Deriving and Processing Terrain Data. Earth and Space Science, 5(9). 537–548. https://doi.org/https://doi.org/10.1029/2018EA000409
  • , , , , & (). How Well Do We Know Europa’s Topography? An Evaluation of the Variability in Digital Terrain Models of Europa. Remote Sensing, 13(24).
  • , , , & (). Improving the Usability of Galileo and Voyager Images of Jupiter’s Moon Europa. Earth and Space Science, 8(12). e2021EA001935. https://doi.org/https://doi.org/10.1029/2021EA001935
  • , , , , , , , , , , , & (). The Swiss data cube, analysis ready data archive using earth observations of Switzerland. Scientific Data, 8(1). 295. https://doi.org/10.1038/s41597-021-01076-6
  • , , , , , , , , , & (). The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews, 110(1). 85–130. https://doi.org/10.1023/B:SPAC.0000021008.16305.94
  • & (). Lunar coordinates in the regions of the Apollo landers. Journal of Geophysical Research: Planets, 105(E8). 20277–20280. https://doi.org/10.1029/1999JE001165
  • , , , , , , , , , , & (). Active Mars: A Dynamic World. Journal of Geophysical Research: Planets, 126(8). e2021JE006876. https://doi.org/https://doi.org/10.1029/2021JE006876
  • , , , , & (). Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sensing, 10(9). https://doi.org/10.3390/rs10091363
  • , , , & (). JIGSAW: THE ISIS3 BUNDLE ADJUSTMENT FOR EXTRATERRESTRIAL PHOTOGRAMMETRY. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-4. 203–208. https://doi.org/10.5194/isprsannals-I-4-203-2012
  • , , , , & (). Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. Journal of Geophysical Research: Planets, 116(E10). https://doi.org/https://doi.org/10.1029/2010JE003755
  • , , , , & (). Landsat 4, 5 and 7 (1982 to 2017) Analysis Ready Data (ARD) Observation Coverage over the Conterminous United States and Implications for Terrestrial Monitoring. Remote Sensing, 11(4). https://doi.org/10.3390/rs11040447
  • , , & (). Software Interface Specifiation for HiRISE Experimental Data Record Products NASA JPL Retrieved from https://hirise-pds.lpl.arizona.edu/PDS/DOCUMENT/HIRISE_EDR_SIS.PDF
  • , , , , , & (). Software Interface Specifiation for HiRISE Reduced Data Record Products NASA JPL Retrieved from https://hirise-pds.lpl.arizona.edu/PDS/DOCUMENT/HIRISE_RDR_SIS.PDF
  • , & (). The Planetary and Lunar Ephemeris DE 421  (IPN Progress Report 42-178) Retrieved from https://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf
  • (). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11(9). https://doi.org/10.3390/rs11091124
  • , , , , , , & (). Building an Earth Observations Data Cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD). Big Earth Data, 1(1-2). 100–117. https://doi.org/10.1080/20964471.2017.1398903
  • , , , & (). Improving the geometry of Kaguya extended mission data through refined orbit determination using laser altimetry. Icarus, 336. 113454. https://doi.org/10.1016/j.icarus.2019.113454
  • , , , , , , , , , , , , & (). Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations.
  • , , , , , , , , , & (). Planned radiometrically calibrated and geometrically corrected products of lunar high-resolution Terrain Camera on SELENE. Advances in Space Research, 42(2). 310–316. https://doi.org/10.1016/j.asr.2007.04.062
  • , & (). Lunar sinuous rilles: Distribution, characteristics, and implications for their origin. Planetary and Space Science, 79-80. 1–38. https://doi.org/10.1016/j.pss.2012.10.019
  • (N.A.). (n.d.). Releases · DOI-USGS/ISIS3. Retrieved from https://github.com/DOI-USGS/ISIS3/releases
  • , , , , , , , , , , , , , , , , , , , , , , , , & (). The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planetary and Space Science, 55(7). 928–952. https://doi.org/https://doi.org/10.1016/j.pss.2006.12.003
  • , , & (). The Kaguya Mission Overview. Space Science Reviews, 154(1). 3–19. https://doi.org/10.1007/s11214-010-9678-3
  • , , , , , , & (). High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images. Journal of Geophysical Research: Planets, 108(E12). https://doi.org/https://doi.org/10.1029/2003JE002131
  • , , , , , , , , , , , , , , , , , & (). Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale slopes of candidate Phoenix landing sites. Journal of Geophysical Research: Planets, 113(E3). https://doi.org/https://doi.org/10.1029/2007JE003000
  • , , & (). THE EFFECT OF ILLUMINATION ON STEREO DTM QUALITY: SIMULATIONS IN SUPPORT OF EUROPA EXPLORATION. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, III-4. 103–110. https://doi.org/10.5194/isprs-annals-III-4-103-2016
  • , , , , , , & (). Evaluating Stereo DTM Quality at Jezero Crater, Mars With HRSC, CTX, and HiRISE Images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020. 1129–1136. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1129-2020
  • , , , , , & (). Evaluating Stereo Digital Terrain Model Quality at Mars Rover Landing Sites with HRSC, CTX, and HiRISE Images. Remote Sensing, 13(17). https://doi.org/10.3390/rs13173511
  • (). Kaguya (SELENE) Product Format Description: Lunar Imager/Spectrometer(LISM(TC/MI/SP)) / SPICE Kernel Japanese Aerospace Exploration Agency
  • (). A standardized lunar coordinate system for the Lunar Reconnaissance Orbiter and lunar datasets: Lunar Reconnaissance Orbiter Project and Lunar Reconnaissance Orbiter Project Lunar Geodesy and Cartography Working Group White Paper, v. 5 Retrieved from http://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf
  • , , , , , , , , , , , , & (). Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research: Planets, 112(E5). https://doi.org/https://doi.org/10.1029/2006JE002808
  • , , , , , , & (). High-Precision Geometrically Corrected HiRISE Images.
  • , , , , , & (). Orbit determination of the Lunar Reconnaissance Orbiter. Journal of Geodesy, 86(3). 193–207. https://doi.org/10.1007/s00190-011-0509-4
  • , , , , , , , , , , , , , & (). Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research: Planets, 112(E5). https://doi.org/https://doi.org/10.1029/2005JE002605
  • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & (). The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP). Icarus, 205(1). 2–37. https://doi.org/https://doi.org/10.1016/j.icarus.2009.04.023
  • , & (). The Future of MRO/HiRISE.
  • , , , , & (). MRO/HiRISE Radiometric Calibration Update.
  • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , & (). Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research: Planets, 112(E5). https://doi.org/https://doi.org/10.1029/2006JE002682
  • (). Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter Reduced Data Record and Derived Products Software Interface Specification Retrieved from https://lunar.gsfc.nasa.gov/lola/images/LOLA_RDRSIS.pdf
  • , , , , , , , & (). Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sensing, 12(3). https://doi.org/10.3390/rs12030426
  • , , , , , , & (). Multispectral Identification Of Water-ice On Mars From Hirise Images. Retrieved from https://www.hou.usra.edu/meetings/lpsc2023/pdf/1495.pdf
  • , , , , , , , , , , , & (). Building Lunar Maps for Terrain Relative Navigation and Hazard Detection Applications. In AIAA SCITECH 2022 Forum.. American Institute of Aeronautics. https://doi.org/10.2514/6.2022-0356
  • , , , , , , , , , & (). Seasonally active frost-dust avalanches on a north polar scarp of Mars captured by HiRISE. Geophysical Research Letters, 35(23). https://doi.org/https://doi.org/10.1029/2008GL035790
  • (). Kaguya Terrain Camera (TC): Instrument Overview and Data Products. Retrieved from https://lsic.jhuapl.edu/uploadedDocs/presentations/763-1.07_Sato_TC_20210302_novoice.pdf
  • , , , , , , , , , , , , , , , , , , , , , , & (). Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research: Planets, 106(E10). 23689–23722. https://doi.org/https://doi.org/10.1029/2000JE001364
  • (). Mars Global Surveyor Laser Altimeter Precision Experiment Data Record. NASA Planetary Data System, MGS-M-MOLA-3-PEDR-L1A-V1.0. https://doi.org/https://doi.org/10.17189/1519520
  • , , , , , & (). Results from the Lunar Orbiter Laser Altimeter (LOLA): Global, High Resolution Topographic Mapping of the Moon. 2350. Retrieved from https://ui.adsabs.harvard.edu/abs/2011LPI....42.2350S
  • , , , , , & (). HiRISE Digital Terrain Models: Updates and Advances.
  • , , , , , , , , , , , , , , & (). Revealing Active Mars with HiRISE Digital Terrain Models. Remote Sensing, 14(10). 2403.
  • , , , , , , & (). The color of the Martian sky and its influence on the illumination of the Martian surface. Journal of Geophysical Research E: Planets, 104(E4). 8795–8808. Retrieved from http://pubs.er.usgs.gov/publication/70021795
  • , , , , , & (). Lunar Reconnaissance Orbiter Mission and Spacecraft Design. Space Science Reviews, 150(1). 23–62. https://doi.org/10.1007/s11214-009-9624-4
  • , , , , , , , , & (). Towards Sentinel-1 SAR Analysis-Ready Data: A Best Practices Assessment on Preparing Backscatter Data for the Cube. Data, 4(3). https://doi.org/10.3390/data4030093
  • , & (). DE421 Lunar orbit, physical librations, and surface coordinates: Jet Propulsion Laboratory Interoffice Memorandum  (IOM 335-JW,DB,WF-20130722-016) Jet Propulsion Laboratory, California Institute of Technology Retrieved from https://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/de430_moon_coord.pdf
  • (). Toward a higher level of automation in softcopy photogrammetry: NGATE and LIDAR processing in SOCET SET®..
  • (). Science of Landsat Analysis Ready Data. Remote Sensing, 11(18). https://doi.org/10.3390/rs11182166
  • , , , , , , & (). The Mars Observer laser altimeter investigation. Journal of Geophysical Research: Planets, 97(E5). 7781–7797. https://doi.org/https://doi.org/10.1029/92JE00341